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We obtain the phase diagram of a Bose-Fermi mixture of hardcore spinless bosons and spin-polarized
fermions with nearest-neighbor intraspecies interaction and on-site interspecies repulsion in an optical lattice at
half filling using a slave-boson mean-field theory. We show that such a system can have four possible phases
which are (a) supersolid bosons coexisting with fermions in the Mott state, (b) Mott state of bosons coexisting
with fermions in a metallic or charge-density wave state, (c) a metallic fermionic state coexisting with super-
fluid phase of bosons, and (d) Mott insulating state of fermions and bosons. We chart out the phase diagram of
the system and provide analytical expressions for the phase boundaries within mean-field theory. We demon-
strate that the transitions between these phases are generically first order with the exception of that between the
supersolid and the Mott states which, within mean-field theory, is a continuous quantum phase transition. We
also obtain the low-energy collective excitations of the system in these phases. Finally, we study the particle-
hole excitations in the Mott insulating phase and use it to determine the dynamical critical exponent z for the
supersolid-Mott insulator transition. We discuss experiments which can test our theory.
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I. INTRODUCTION

Recent experiments on ultracold trapped atomic gases
have opened a new window onto the phases of quantum
matter.! A gas of bosonic atoms in an optical or magnetic
trap has been reversibly tuned between superfluid (SF) and
insulating ground states by varying the strength of a periodic
potential produced by standing optical waves.' This transi-
tion has been explained on the basis of the Bose-Hubbard
model with on-site repulsive interactions and hopping be-
tween nearest neighboring sites of the lattice.>> Further, the-
oretical studies of bosonic atoms with spin and/or pseu-
dospin have also been undertaken.*> These studies have
revealed a variety of interesting Mott! and supersolid® phases
and superfluid-insulator transitions® in these systems. On the
fermionic side, the experimental studies have mainly concen-
trated on the observation of paired superfluid states’ and the
BCS-BEC crossover in such systems near a Feshbach
resonance.® More recently, it has been possible to generate
mixtures of fermionic and bosonic atoms in a trap.” Several
theoretical studies followed soon, which established such
Bose-Fermi mixtures to be interesting physical systems in
their own right,'®!! exhibiting exciting Mott phases in the
presence of an optical lattice.

Many of the earlier studies of Bose-Fermi mixtures have
been restricted to one-dimensional (1D) systems!? or have
concentrated on regimes where the coupling between bosons
and fermions are weak.'? The existence of a supersolid (SS)
phase in these system in such a weak-coupling regime has
also been predicted.'* Other works!®!! which have looked at
the strong-coupling regime have restricted themselves to in-
teger filling factors of bosons and fermions (per spin) and
have therefore not addressed the phenomenon of transla-
tional symmetry breaking and possible associated SS phases
in the strongly interacting regimes of these systems. More
recently, however, Titvinidze et al.'> studied a mixture of
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spinless softcore bosons with an on-site interaction U and
spin-polarized noninteracting fermions at half-filling in a
three-dimensional (3D) optical lattice using dynamical
mean-field theory (DMFT). Several interesting phases, in-
cluding a SS phase of bosons and charge-density wave
(CDW) states of fermions, have been found in Ref. 15.

In this work, we study a mixture of hardcore spinless
Bosons and spin-polarized interacting fermions in an optical
lattice at half filling using a slave-boson mean-field tech-
nique. We concentrate on the case where both the bosons and
the fermions have a nearest-neighbor density-density repul-
sive interaction in addition to the usual on-site interaction
term between them. We provide an analytical, albeit mean-
field, phase diagram for the system and demonstrate that the
ground state of such a system consists of four distinct phases,
namely, (a) a Mott insulating (MI) phase where both fermi-
ons and bosons are localized at the lattice sites, (b) a metal
+SF phase where the fermions are in a metallic phase with a
gapless Fermi surface and the bosons are in a superfluid
state, (c) a SS phase where the Bosons are in the SS state
while the fermions are localized at the lattice site, and (d) a
CDW +MI phase of coexisting fermions with weak density-
wave order along with Mott insulating bosons. We show,
within mean-field theory, that the transitions between these
phases are generically first order with the exception of that
between the SS and the MI phases which is a continuous
quantum phase transition. We also obtain the low-energy col-
lective modes in the metal+SF, CDW+MI, and SS phases
and demonstrate that they have linear dispersions with defi-
nite group velocities. Further, in the MI phase which has no
gapless modes, we find the dispersion of the gapped particle-
hole excitations and use it to determine the dynamical critical
exponent z for the continuous MI-SS transition. We also dis-
cuss realistic experiments which can test our theory.

The plan of rest of the paper is as follows. In Sec. IT A,
we develop a slave-Boson mean-field theory for the system.
This is followed by Sec. II B, where the mean-field phase
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diagram is charted out. In Sec. III, we obtain the low-energy
collective modes of the system in the metal+SF, CDW
+MI, and SS phases. This is followed by Sec. IV where we
discuss the gapped particle-hole excitations of the MI phase
and use it to determine z for the SS-MI transition. We discuss
relevant experiments which can test our theory and conclude
in Sec. V

II. SLAVE-BOSON MEAN-FIELD THEORY

A. Mean-field equations

The Hamiltonian of the Bose-Fermi mixture in a
d-dimensional hypercubic lattice is described by the Hamil-
tonian

H=HF+HB+HFB, (1)

HF:_IFEC +VFE”1 /’ (2)
U (ij)

Hy=—132,bjb;+ V> nfn?, 3)
(if) (ij)

HFB: UE l’llFl’l?, (4)

where ¢; (b;) and nf'=c/c; ("®=bb;) denote the annihilation
and number operators for fermions (bosons) at site i, Vi(Vp)
and t;(t5) denote the nearest-neighbor interaction strengths
and hopping amplitudes for the fermions (bosons), respec-
tively, U represents the amplitude for on-site interaction be-
tween the fermions and the bosons, and 2, represents sum
over nearest neighbor ij pairs on the lattice. In what follows,
we shall study the Hamiltonian at half filling. We note at the
outset that this constraint of half filling implies !, n® <1 at
each site. An inspection of the Hamiltonian [Eq. (1)] shows
that the ground state of the system shall be a Mott state for
both bosons and fermions when Vp, Vp>tp, tz whereas in
the opposite limit, it will be a mixture of superfluid bosons
and metallic fermions. Our subsequent analysis reveals two
additional phases of the system as indicated in Sec. I.

To obtain an analytical understanding of the phases of
these model, we first introduce a slave-boson representation
for the fermions, c;=a;d;, where a; denotes annihilation op-
erator for the slave bosons and d; represents the annihilation
operator for pseudofermions. We note that in this represen-
tation, the anticommutation relation for the fermionic opera-
tor [cfc )= 6, where 5 denotes the Kronecker delta, en-
forces the constraint n —n on each site. In terms of these
slave bosons and pseudofermlons the Hamiltonians Hy and
Hpp in Egs. (2) and (4) can be written as

Hyp=—1t2 dlalad;+ V2 nin +E N (¢ —nd), (5)
(@ I

Hpp= UE ”?”?’ (6)

where we have implemented the constraint nf=n¢ using
Lagrange multipliers \; at each site and have used the fact
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that n%=n?=n"=<1 at each site i. We note that the Hamil-

tonian H'=Hp+H+H}. is exact and is completely equiva-
lent to H [Eq. (1)].

To make further progress, we proceed with mean-field
approximation of H'. To this end, we first decompose the
quartic hopping term in Eq. (5) using

IFE dlalajdj—IIE aja; +t22 d

(i) G IF

Nt2t1

()

where N is the number of sites in the lattice and the hopping
amplitudes #; and #, are given by

FE«zm,a=—Em (8)
<l]> <tj>

Here (..), denotes average with respect to the ground state of
the system. Next, we use a mean-field approximation for the
constraint term and approximate the Lagrange multiplier
field \;=\o+A(=1)/, where for sake of definiteness, we take
i=ij+iy+...+i; to be even for A sublattice sites. Such an
ansatz for \; is motivated by the fact that it is the simplest
mean-field ansatz that preserves the basic symmetries of the
problem and, at the same time, allows for translational sym-
metry breaking in the pseudofermion sector. With these ap-
proximations, the mean-field Hamiltonian for the system can
be written as

HMF_—t2Edd+A2( 1)i(nf - nf)
(ij)

+ > (Vpning - tlaj'a_,-) + > Unf’nf’
(ij) i

Nty
+2 (an?nf—tBb ) - 1
(ij) Ir

)

In writing Eq. (9), we have ignored the term \,=(nf—n?)
since it merely renormalizes the chemical potential of the
fermions and thus behave like a constant as long as we re-
strict ourselves to half filling.

To obtain the ground-state energy corresponding to this
mean-field Hamiltonian, we now use a variational ansatz for
the ground-state wave function

| W), = I1 i) © I1 lp) © |FS),
ieA ieB
1) = [cos()|n® = 0) + sin(0) |n® = 1)] ® [cos(y)|n" = 0)
+sin(y)|n*=1)],

|hg) = [cos(6)[n® = 1) + sin(6)|n® = 0)] © [cos(y)|n® = 1)
+sin(y)|n? = 0)],

|FSy= 11 o(k| - kpdj|0). (10)
k

where k; denotes the Fermi wave vector for the pseudofer-
mions and # and vy are variational parameters which has to be
determined by minimizing the ground-state energy. Note that
the variational wave function given by Eq. (10) has a two-
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sublattice structure which allows for the possibility of trans-
lational symmetry broken phases. For the current system,
where the fermions and the bosons both interact via nearest-
neighbor density-density interaction terms, Eq. (10) is the
simplest possible mean-field variational wave function which
respects all the symmetries of the Hamiltonian. We would
like to point out here that capturing the phases of a Bose-
Fermi mixture with such interaction terms is beyond the
scope of any single-site mean-field theory including single-
site DMFT.

The variational mean-field energy E,=(W|Hyy¥) of the
system can now be easily obtained and is given by

E

d
N_t: = E[ZI sin?(2y) + Z sin*(26)]

+ U?,[cosz(y)cosz( 6) + sin’(y)sin*(6)]

!

- %(005(23/) + %<F5|§i‘, (- 1)idjdi|Fs>>

Z,=(t1—VF)/tF, Z=(tB_VB)/tF9 (11)

where we have used f,/tr=sin’(2y), A’=A/tr, and U’
=U/tp and 1,/ty has to be determined from Eq. (8). The
corresponding mean-field equations which determine the
ground-state values of the variational parameters are given
by JE,/ d0=0E,/ dy=0JE,/ JA' =0 and yields

U/
Sin(29)[7 cos(2y) +2Zd cos(20)] =0,
. U’
sm(2y)[7 cos(26) +2Z'd cos(2y) — A’] =0,

cos(2y) + %(FS|E (- 1)id!d|FS) =0. (12)

Next, we evaluate the effective hopping amplitude #, and
2/N(FS Ei(—l)’djdi|FS>. To this end, first, let us consider the
pseudofermion Hamiltonian H :—t22<,-j>d§dj—AEi(—l)infl.
The energy spectrum of H is given by *E(k), where E(k)
=\e(k)?+A%, e(k)=-21,%,_, 4se0s(k;a) is the energy disper-
sion of free fermions in a hypercubic lattice in d dimensions,
and a is the lattice spacing which we shall, from now on, set
to unity. The density of states (DOS) corresponding to these
fermions are therefore given by

2 2
5 . \"E - A
p(E) = py(VE® - Az)T,

1 d% !
pO(a = 2_12 (27T)d 6|: E— z Cos(ki)] > (13)

where p, denotes the DOS of free fermions with tight-
binding dispersion on a hypercubic lattice, €=€/2¢,, and we
have used the relation p(E)dE=pgy(€)de. It is convenient to
use Eq. (13) to express the expectation values over pseudo-
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fermion ground states in Egs. (8) and (12) and one obtains

cos(2y) =—AL(A), 1 =tD,
[Z
ﬁpo(?)dg
nE=TEA (14)
f po(€)dé
-1
0
f €po(€)de
Sl S (15)

2= 0 .
f po(€)de
-1

Equations (12), (14), and (15) denote the complete set of
mean-field equations which can be now solved to determine
the mean-field phase diagram.

B. Phase diagram

Equations (12) and (14) can be easily solved numerically
to obtain the mean-field phase diagram for the system. How-
ever, before resorting to numerics, we provide a qualitative
discussion of the nature of the phases.

We find that Egs. (12) and (14) yield four distinct solu-
tions which correspond to four possible phases of the system.
First, we find a MI phase with broken translational symmetry
where both the fermions and the bosons are localized. Such a
phase corresponds to the solution'®

6=0, y=m?2, A— . (16)
Note that the divergence of A corresponds to #,— 0 which in
turn ensures that cos(2y)=—1. Such a MI state corresponds
to a intertwined checkerboard density-wave pattern where
the Fermions are localized in sublattice A [n?:sin2(7)=nf
=1 for i € A] and the Bosons are localized in sublattice B
[n®=cos(#)=1 for i e B]. The mean-field energy of this state
is E 1= 0.

Second, we find a SS phase, where the Bosons are in a
supersolid phase with coexisting density wave and superfluid
order and the Fermions are localized in a Mott phase. Such a
state corresponds to the solution

U/
cos(26) = —,
47Zd
Such a state has (b)=sin(26)/2+#0 and ((—l)ibjbi>=
—cos(26) #0 and thus corresponds to a SS phase for the
bosons. Note that the realization of this state necessarily re-
quires U'/4Zd<1. For U'/4Zd=1, #=0 and we recover the
MI state where (b)=0. The energy of the SS state is per site

given by
Zdtp[ U’ 2
O N
2 \4Zd

Third, we find the MI+CDW state where the fermions
show weak density-wave oscillations whereas the Bosons are

y=m2, A—oo. (17)
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localized in the MI state. This corresponds to the solution
0=0, y=vy,#0,7/2, (19)

where 7, and A are to be determined from a numerical so-
lution of the mean-field equations

!

cos(2yp) = — L(l —2A/U) == AL(A). (20)

47'd
The energy of this state per site is given by
U cos’(y,) 47'd
= Wl o sin’(0) ). (1)

Finally, we find the state in which the superfluid Bosons
coexist with metallic Fermions. This corresponds to the so-
lution

0=vy=m/4 A=0. (22)
Note that such a phase has (b)=sin(26)/2=1 and ((
—1)"bj'b,-)=—cos(20)=0 so that the Bosons are in a uniform
superfluid state. Also, A=0 and ((—1)'a}a;)=-cos(2y)=0 in
this state indicating that the fermions are in a gapless uni-
form metallic state. The energy of this state per site is given
by

E4=%][1—%(Z+Z’)]. (23)

The phase boundaries corresponding to these phases can
be analytically computed using Egs. (18), (21), and (23),
provided v, and ¢, (which determines Z') are obtained from
numerical solutions of Egs. (20) and (8). For the MI phase to
occur, we must have E,, E3, and E,;= E;=0 which yields the
conditions

!

2d U
1-—(Z+Z)]=0, Z=0 and =1,
v’ 4|z|d

47'd

!

sin?(yy) = 1. (24)

Note that the condition U’ /(4|Z|d) <1 which is necessary for
the realization of the SS phase has to be simultaneously sat-
isfied with the condition Z=0 to make sure that the SS phase
is actually a competing candidate to the MI state. The MI
phase can indeed be realized in the parameter regime Z=0
provided U’'>4|Z|d. The first condition (Z+Z')=U'/2d
shows that the MI phase is favored over the metal+ SF phase
for large U/d and predicts a linear phase boundary in the
U'-Z plane U'=2d(Z+Z') with a slope of 2d and intercept
of 2dZ’ between these two phases. Note that the MI phase
always wins over the metal+ SF phase if the nearest-neighbor
interactions between the bosons and fermions are large com-
pared to their hopping amplitudes making Z+Z' negative.
The final condition 4f/—,,dsinz(yo) =1 indicates that the phase
boundary between the MI and MI+CDW phases is indepen-
dent of Z. The former phase is favored over the latter for
larger U and smaller Z'.

Similarly for the SS phase to occur one needs
U'/(4|Z|d)<1 and E,<E,, E5, and E, which yield
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a2 0 2 2
z

FIG. 1. Ground-state phase diagram as a function of Z and U’
for noninteracting Fermions (Vz=0). The phase boundaries coin-
cide with the analytical mean-field phase boundaries (see text for
details).

U’ 47'd | U’ 2
%cosz(y0)< U sin®(y,) — 1) = (@ - 1) ,

AZ4d o U’
sin =1,
g aMz7'd

Z=0, =1. (25

We note that the SS phase is favored when the nearest-
neighbor interaction between the bosons are weak compared
to their hopping amplitudes making Z positive and when U’
is small enough so that U'/(4|Z|d) < 1. Also, from the con-
ditions in Eq. (25) (obtained using E,<E,, E,), we note that
for a given Z' and d, the boundary between the metal+SF
and the SS phases is a parabola in the U’ —Z plane given by
U'?=16ZZ'd* while that between the SS and the MI state is
a line given by U'=4Zd.

Finally, the condition for occurrence of the metal+SF
phase is given by E,=E,, E,, and E3, and is given by

! !

=1 and

=1,

2d
1-=—(z+Z)]| =0, =
U’ 4|z|d

4 V’,ﬁd

!

(1 - 2Utf(Z+Z')> =2 c082(7’0)<1 - 45,d51n2(70)>-

(26)

The last condition in Eq. (26) determines the phase boundary
between the metal+SF and the MI+CDW phases which de-
pends on value of y,. However, numerically, we find that for
U=0, yy=m/4, and in this regime, the phase boundary be-
tween these phases occurs at Z=0 for all Z’ and d. Note that
strictly at U=0, the Fermionic state is metallic; however a
CDW gap opens up in the Fermionic spectrum for an infini-
tesimal finite U’.

To verify the above-mentioned qualitative arguments and
to find a precise phase diagram for the system, we numeri-
cally solve Egs. (12), (14), and (15) for d=2 and for repre-
sentative values V/ty=0,0.5. We plot the ground-state
phase diagram as a function of Z and U’ in Figs. 1 and 2. We
find that the numerical results agree well with the qualitative
arguments. Figures 1 and 2 indicate that the phase boundary
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20+

=) Ml

CDW+MI

O T T
-4 2

FIG. 2. (Color online) Same as in Fig. 1 but for Vz/tz=0.5. The
interaction between the Fermions favors the SS phase as can be
seen by comparing Figs. 1 and 2.

between the CDW +MI and MI phases is independent of Z as
noted earlier. The linear and the parabolic natures of the
phase boundaries between the MI and SS phases and the SS
and metal+SF phases, respectively, can also be easily veri-
fied from the figures and are in accordance with the qualita-
tive discussion. We note that one of the effects of nearest-
neighbor repulsion between the fermions is to enhance the
SS phase which occupies a larger region of phase space in
Fig. 2 (Vi/t;=0.5) than in Fig. 1 (Vy=0). Such an interac-
tion, for Z=0, also favors the Mott phase over the CDW
+MI phase as can also be seen from Figs. 1 and 2.

To determine the nature of transition between the different
phases, we plot the ground-state values € as a function of Z
for U'=10 and Vg/tz=0.5 in Fig. 3. Such a plot clearly
shows that the transition between the metal+SF and the SS
phases is, within the mean-field theory considered here, first
order and is accompanied by a jump in the value of 6. In
contrast, the SS-MI transition turns out to be continuous. A
similar plot of ground-state values 7y as a function of U’ for
Z/tp=-2 and V=0, shown in Fig. 4, indicates that the tran-
sition between the CDW +MI and the MI phases is also dis-
continuous and is accompanied by a jump in the ground-state
value of 7.

Next, we compare our phase diagram to that obtained
from DMFT in Ref. 15. This can be done in the regime of

1.2+
0.9+
0.6

0.3+

0.0

N

FIG. 3. (Color online) Variation of ground-state value of # with
Z for U'=10 and Vy/tp=0.5. The discontinuity in 6 at Z=3.38
indicates a first-order transition between the metal+SF and the SS
phases. The transition between the SS and the MI phases is
continuous.
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0.8

U

FIG. 4. (Color online) Variation of the ground-state value of y
with U’ for Z=-2 and V;=0. The discontinuity in y at U’ =2 indi-
cates a first-order transition between the CDW+MI and the MI
phases.

large positive Z (which corresponds to Vy/13— 0) which was
the case treated in Ref. 15. We find that the two phase dia-
grams qualitatively agree in the sense that both yield SS and
MI phases in these limits. The difference lies in the fact that
our mean-field predicts a second-order transition between the
two phases whereas DMFT yields a narrow region of coex-
istence. This is presumably an effect of quantum fluctuation
which is not captured within the mean-field theory. In addi-
tion, we also find a region of metal+SF phase at low U
which was not seen in Ref. 15.

Finally, we would like to point out that the slave-boson
mean-field phase diagram obtained above yields qualitatively
correct phase diagram, but not a quantitatively correct one.
This can be most clearly seen by noting that our Hamiltonian
reduces to an effective Falicov-Kimball (FK) model!’ in the
limit Z=tz=Vp=V=0. This is most easily seen by writing
our starting Hamiltonian H [Eq. (1)] for 15=V=Vy=0,

Hpg=—tr> c;rcj +UY, clem®. (27)
(ij) i

At half filling the Bosons are localized in the B sublattice so
that n?:[l —(=1)7]/2. Thus the Fermions have a CDW insta-
bility even for an infinitesimal U due to nesting for half
filling on a square lattice. Consequently, the FK model at half
filling is insulating for any infinitesimal U, as known from
several earlier studies.'® Such a CDW instability, which can
be easily captured by weak-coupling mean-field theory, is
not straightforward to obtain in our strong-coupling slave-
boson mean-field approach which predicts a finite critical U
for the transition from metal+ SF to the MI phase. Note how-
ever that the slave-boson mean-field theory does predict a
CDW +MI state for weak U, but for small negative Z, as can
be seen from Fig. 1. This indicates that the phase diagram
obtained has qualitatively, but not quantitatively, correct fea-
tures.

III. COLLECTIVE MODES

The phases of the Bose-Fermi mixture discussed in Sec. II
allows for two types of excitations. The first type is the low-
energy gapless collective modes that are present in the
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metal+SF, CDW+MI, and SS phases of the system. These
are the gapless Goldstone modes corresponding to the boson
and the slave-boson fields. For all of these modes, the
pseudofermion sector remains gapped and does not contrib-
ute to their dispersion. The gapped modes correspond to
particle-hole excitations in the CDW+MI, SS, and Mott
states. In this section, we concentrate on the gapless collec-
tive modes in the CDW+MI, SS, and metal+SF phases.

To obtain the dispersion, we first consider a time-
dependent variational wave function

[W (1)) = [cos(8)|n® = 0) + sin(8;) e Xi|n® = 1)]
® [cos(y,)|nf = 0) + sin(y,)e  ®|nt = 1)],
(28)

where 6, x;, v;, and ¢; are space-time-dependent fields. Note
that in the static limit, the ground state of the system corre-
sponds to ;= 0;y=0y(7/2—6,) and ;= y,y="yy(m/2—",) for
i € A(B) sites, and x;=¢;=0, so that |V ,(¢)) reduces to |¥).

The Lagrangian L=3{V (1)|id,—H' +up=n?
+,LLFE,-nIF |W,) can now be computed using the variational
wave function and one obtains

L =2, [9,x; sinX(8) + d,¢; sin*(y,) — U sin*(6,)sin*(y,)]

1 . .
+<Z> é_l(tB sin(26;)sin(26;)cos(x; - x;)
ij

+ 1, sin(2,)sin(2y;)cos(; — ;)

—{Vpsin®(y,) sinz(yj) +Vp sinz(é’,-)sinz(ﬂj)})
+ 2 [A{- Sinz(%‘)(— 1)+ <nf>} + Up sinz(ﬁi)

+ up sin?(y)], (29)

where (n)=(FS|(=1)'d]d,|FS)/N is the fermion number den-
sity different on A and B sublattices and all time dependence
of the fields are kept implicit for the sake of clarity. To obtain
the collective modes, we now write 6,(¢)=60,y+56,(r) and
v(t)=y;0+ 8y:(t) and expand the Lagrangian to quadratic or-
der in 86,(1), 8y,(t), ¢:(t), and x;(¢). Then a variation of this
Lagrangian with respect to 860,(z), 8y;(z), ¢;(1), and x,(¢) and
consequent adjustment of values of the parameters ug and
mp following Ref. 19 yield the equations for the low-energy
collective modes (we set #i=1 from now on)

3,00+ t1d sin(2yy)[1 - c(k) ] =0, (30)
Iy — a1 (k) 0y — U sin(26) 66, = 0, (31)
0,86, + tgd sin(26)[1 - (k) ]x =0, (32)
X — @2(K) 86 — U sin(2yy) 8y, =0, (33)

where we have taken the Fourier transform of all the fields,
c(k)=2;_, scos(k;)/d, and @, and a, are given by

4nd [ 1+ c(k)(?sin2(2 Yo) + cos2(270)>} ,
I

ai(k) = sin(2y,)
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ay(k) = 41pd {1 + c(k)(%sin2(2 6p) + cos*(2 00))} )

sin(2 00) B
(34)

It is important to note that Eqs. (30) and (31) hold when
¥# 0 and 7r/2 while Egs. (32) and (33) hold when 6,# 0
and 7/2. Thus none of these equations are valid in the MI
phase which does not support any low-energy collective
modes. The gapped modes of the MI phases will be obtained
in Sec. IV.

In the SS phase where cos(26,)=U"/(4Zd)#0,1 and v,
=m/2, the collective mode corresponds to the low-energy
excitations of the bosons and is given by Egs. (32) and (33).
A simple set of standard manipulations of these equations
yields the dispersion of the collective modes w2=2v%(k)[1
—c(k)], where

v1(K) = td sin(26p) o (K)/2. (35)

Note that for low momentum, we get a gapless linearly dis-
persing collective mode with velocity v,,=v,(k=0). Simi-
larly for the MI+CDW phase, where 6,=0 and y=1,, the
collective mode corresponds to the low-energy excitations of
the pseudobosons and can be obtained by solving Egs. (30)
and (31). Since the pseudofermion sector is always gapped in
this phase (A # 0), the collective mode here corresponds to
the density-wave mode of the real fermions. These modes
have linear dispersion w2=2v§(k)[1 —c(k)], where

v3(K) = t,d sin(2y) a; (K)/2. (36)

Thus for low momenta, we again get a gapless linearly dis-
persing collective mode with velocity vepw=v,(k=0).

Finally for the metal+SS phase, all the Egs. (30)-(33)
hold and they need to be solved simultaneously. In this phase
since yy,=6y=m/4, we find that a;(k)=41,d[1+c(k)Vg/t;]
and a,(K)=41zd[1+c(K)Vy/1g5]. Solving these equations, one
finds two collective modes with linear dispersions w’
=202 k[1-c(k)], where v. (k) are given by

vi(k)= i[[al(k)tld + a(K)tpd]

+ \[a,(K)tyd — an(K)tgd > + 16(Utyt,d)? |.
(37)

These collective modes result from the hybridization of the
Bogoliubov modes of the bosons and the density-wave
modes for the metallic fermions. This fact can be easily
checked by putting U=0 in Eq. (37) by which one can re-
trieve these modes with velocities v,zg(k):az(k)tgd/2 for the
bosons and v%(k):al(k)tld/2 for the fermions. As U’ in-
creases, the hybridization between these modes becomes
stronger until the velocity v_(k=m) touches zero at U’
=4\|Z'Z|d which is precisely the condition for the metal
+SF phase to become unstable to the SS phase.

IV. GAPPED MODES IN THE MI PHASE

The MI phase, in contrast to the other three phases of the
system, does not support a gapless mode. The lowest-lying
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(A) (B)
(C) (D)

FIG. 5. (Color online) Cartoon representation of the MI state.
(A) The Mott state at half filling. The red filled circles represent
Bosons and the empty blue circles indicate Fermions. (B) A particle
and a hole excitation which are not nearest neighbors. (C) An inter-
mediate virtual high-energy state which assists hopping of holes.

(D) A state where the hole has hopped to the next-neighbor site.
This state is identical in energy to the state (B).

excitations of such a state with conserved number density are
particle-hole excitations. Such excitations are of two types.
The first type, shown in second panel of Fig. 5, involves
particle and hole excitations that are spatially well separated
while the second type, shown in second panel of Fig. 6,
involves particle and hole excitations in nearest-neighbor
sites which form a dipole. In what follows, we first compute
the energies of both these excitations using perturbation
theory up to second order in tz,r/ Vg, which are supposed to
be small in the MI phase.

Such an energy estimate can be easily carried out by
strong-coupling perturbation theory developed in Ref. 20 in
the context of single species Bose-Hubbard model. The gen-

(A) (B)

(C) (D)

FIG. 6. (Color online) Cartoon representation of the MI state
and the associated dipole excitations. All symbols are same as in
Fig. 5. (A) The Mott state at half filling. (B) A dipole excitation
over the Mott state. (C) An intermediate virtual high energy state
which assists hopping of dipoles. (D) A state where the dipole has
hopped to an adjacent link. This state is identical in energy to the
state (B) when Vp=Vp.
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eralization is largely trivial, except for one important detail.
In the standard Bose-Hubbard model studied in Ref. 20, any
particle/hole excitation could have lowering of energy via
nearest-neighbor hopping which is O(¢/U) process. In con-
trast, as can be seen from Figs. 5 and 6, it is not possible for
the particle-hole or dipole excitations to directly hop to the
next site since such a direct hop always takes us out the
low-energy manifold of states in the Mott limit. In particular,
we note that any kinetic-energy gain of the particle-hole or
dipole excitation must occur via hopping of the particle/hole
to the second-neighbor sites and hence necessarily leads to
O(#*/V?) energy gain.

We first compute the excitation energy of the bosonic (fer-
mionic) particle-hole pair when they are far apart. The on-
site energy of creating such a pair is EZF. =4dVy,+U
while the energy lowering due to hopping of each of the
particle and the hole is given by Ef(/)gpingz—Zd(Zd
—1)13,;/[2(2d=2)Vyp+ U]. The energy of the Mott state to
second order in perturbation theory is Eyy=-d(t3/[2(2d
—-1)Vp+ U]+t12;/[2(2d—1)VF+ U)) so that the excitation en-
ergy of the particle-hole pair is

4d(2d - 1)t3,
22d = 2)Vgp+ U
dr’ dr
+ u + N .
22d-1)Vg+U  2(2d-1)Vp+U

Eg—/lil?: 4dVB/F+ U_

(38)

We note that in the limit of large d, where the mean-field
results are expected to be accurate, we have

8d 1

EPF ~4qvy .+ U- —25—.
p-h BIE 4dVyp+ U

(39)
Tg/f):F Mott state is destabilized in favor of the SS phase when
E)",=0.

Next, we compute the excitation energy of the bosonic/
fermionic dipole state. We are going to do this in the limit of
Vr=Vp=V. We note at the outset that once such a dipolar
excitation is created, it remains stable, i.e., the hole cannot
hop away arbitrarily far away from the particle. It can be
easily verified from Fig. 6 that such hoppings generate
higher-energy end states and take one out of the low-energy
manifold of states.

The on-site energy cost for creating such an excitation is
Eonsie=2(2d—1)V+U while the hopping process, shown
schematically in Fig. 6, necessarily involves hopping of both
fermions and bosons and leads to an energy gain of Eﬂopping
=1ptp/2(2d—1)V. Thus the net energy of such a dipole exci-
tation is given by

Iplp
202d-1)V
dr’ dr
+ B + £ .
20d-1)V+U  2Qd-1)V+U

Edipole= 2(2d— 1)V+ U_

(40)

We note that for d> 1, where our mean-field theory holds, it
is always energetically favorable to create particles and holes
well separated since Eﬁégpmg<Eﬁoppmg. However, the dipolar
excitations may become favorable in low dimension and for
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large U/V. In this case, Eg(/)gping>Eﬁopping for U>V and in
this limit, the dipolar excitations would be preferred in de-
stabilizing the MI phase. We shall not discuss this issue here
any further since this is clearly beyond the scope of our
mean-field theory.

Finally, we compute the dispersion of the gapped particle-
hole excitations within mean-field theory where the particle
and the hole are spatially well separated and do not interact.
To this end, we temporarily relax the constraint of conserva-
tion of particle number and consider the energy of excita-
tions of adding a particle £, and a hole Ej, to the Mott state.
The physical particle-hole excitation energy can then be
computed from E,,=E,+E,. To compute the energy of these
particle/hole excitations, we adapt a time-dependent varia-
tional approach as done in Ref. 19 for single species Bosons
in an optical lattice. We begin with the variational wave
function of Bosons and slave bosons (fermions) given by

[(1)) = (1)) X [he(0)),
lp(0) = £6(0)[n = 0) + (D) n = 1),

() = g5(1)|n = 0) + g7(1)[n” = 1), (41)

where a=A,B denotes sublattice indices. The coefficients f
and g satisfy the normalization condition |f,|*+|f;|>=1 and
|lgol>+]g1/>=1. We note that at equilibrium f3=sin =0, £}
=cos 0=1, gé:cos v=0, g?:sin v=1, fg(1)=f?(0)’ and gg(l)
:g?(o) for the MI phase.

The Lagrangian of the Bose-Fermi mixture can then be
written as

L= E iLfoifoj + F1if1) + 80j80; + 81;81,]
j
- (2% [— taf1ifoifoif 1 — 1181i80i80;81; + Vil If 1,1
ij
+ Velgil*lg 1?1 - UE Fiilleul” + sz il
1 1

+ MfE lgul* - 2 Nfol? + 17 =1
- 2 villgiol* +1g1l* - 1), (42)

where \; and v; are variational parameters used for imple-
menting the constraint whose values are to be determined
from proper choice of the saddle point which in the MI phase
yields N\y=pu,;, and Az=0 for the bosons and v,=0 and vy
=, for the slave bosons.

The saddle-point equations for the variational coefficients
fi(r) and g;(r) then read

ifOi"'IBfli%ﬁijj_)\ifOi:O,

i8o; + tlgliz gTngj - V80 =0,
W
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if1i— [— thOiEﬁ)jflj"‘ 2Vafii [l + Ufilgl* - belz}
92 9
~A\f1i=0.
ig1i— [— tlfo,-E 83_j81j+ 2VF811‘2 |glj|2+ Ugiilful* - ,U«fgli]
G 92

- v;g1;=0. (43)

Next we implement the two-sublattice structure, shift to
momentum and frequency space, and expand fi’=df5"
+ a/B and g’;‘l/(B =5g;‘l/(B + gﬁ/B , where a=0,1. Note that since
S8 and 8¢*'8 correspond to deviation of particle number of
the MI state, these dispersions corresponding to their eigen-
modes must represent the particle and hole excitations over
the MI phase. In the MI phase, we find that the equation of
motions for the bosons and the pseudobosons decouple at
linear order 8f4° and &g’. For the bosons, we obtain, to

linear order in &f%2,

— w8y = = 2dtc(K) OfE + N Sf s

— w8f%, =~ 2updc(K) oy + 2V 2 0f oy + U
= (1= Np) Oy (44)

which yields two physical excitation dispersions correspond-
ing to particle and hole excitations

U
Ep(h) =+ (_) 2dVB + E — Mp

U 2
+ \/ (deB + 5) - [21pde(K)]. (45)

The energy of a particle-hole excitation which conserves par-
ticle number is therefore obtained by adding E, and E), and is
given by

E =2 \/ <2de + %’)2 C[ede®T. (46)

Note that E,, vanishes along the line Z=U'/4d which
agrees with the mean-field result for the SS-MI phase bound-
ary. Also, expanding Eq. (46) to O(t3) for k=0 leads exactly
to Eq. (39) which shows that the second-order perturbation
theory discussed earlier agrees to the present calculation in
the high d limit. Further, at small wave vector, we find E,,
~ |k| which shows that the SS-MI quantum phase transition
has a dynamical critical exponent z=1. Similar dispersion
can be obtained for the pseudobosons by considering collec-
tive modes corresponding to &g, These modes have the
same dispersion as Egs. (45) and (46) with Vj and 1 re-
placed by V; and t,, respectively.

V. DISCUSSION

Experimental realization of Bose-Fermi mixtures has long
been achieved in ultracold atomic systems. These mixtures
can be easily tuned to a regime where the on-site intraspecies
interaction between both the fermions and the bosons is large
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so that they effectively behave as hardcore particles. Thus
experimental realization of a Bose-Fermi mixture with Vp
=Vr=0 is relatively straightforward. However, most such
mixtures do not have sufficiently large nearest-neighbor re-
pulsion and thus it might be difficult to realize mixtures
which have large V or V. Some progress in this direction
has recently been made in Ref. 21. Also, use of spin-
polarized >*Cr atoms for the fermionic part of the mixture
may help since these atoms have significant dipole moment
which may provide the requisite interaction.

Once such a Bose-Fermi system is realized, several pre-
dictions of the present work can be verified by realizable
experiments that are commonly used for ultracold systems.
First, we note that since the bosons are spinless and the fer-
mions are spin polarized, the bosonic and the fermionic parts
of the mixture can be separated by applying a standard Stern-
Gerlach field during a standard time-of-flight experiment as
done earlier in Ref. 22 in the context of spinor bosons in
optical traps. Such a procedure allows us to separately study
the momentum distribution functions of the bosons and the
fermions using time-of-flight experiments.' For the bosonic
cloud, the distinction between the SF and the MI phases can
be easily done by measuring the presence or absence of co-
herence peaks in its momentum distribution as measured in a
standard time-of-flight experiment. The precise nature of the
broken translational symmetry in the MI and the SS phases
for the bosons can also be determined by studying noise
correlations of the expanding clouds as already proposed in
Ref. 23. Thus, the MI, SS, and SF phases for the bosons can
be qualitatively distinguished by these experiments. As for
the fermions, the presence/absence of a Fermi surface for the
fermions in a trap can be easily distinguished in time-of-
flight measurements as performed for ultracold fermions in
Ref. 24. Thus, these experiments should allow one to quali-
tatively distinguish between all four predicted phases. One of
the central predictions of our theory is that for any finite U,
the metallic state of the fermions shall always be accompa-
nied by a SF phase of the bosons. In terms of time-of-flight
experiments this means that any measurement on fermions
which sees a gapless Fermi surface shall always be accom-
panied by corresponding coherence peak (and no density-
wave ordering) for the bosons. The collective modes com-
puted in this work can also be verified experimentally using
standard inelastic light-scattering experiments.”> Such ex-
periments can detect low-energy collective modes and
should thus detect either two (metal+ SF phase) or one (SS or

PHYSICAL REVIEW B 79, 115124 (2009)

MI+CDW phase) linearly dispersing collective mode(s). The
MI phase will be characterized by the absence of any low-
energy collective modes of the system.

There are several possible extensions of our analysis. The
first and the simplest extension would be to study the phases
of the Bose-Fermi mixture away from half filling. This
would require a more careful handling of the chemical po-
tential up and wy of the bosons and the fermions. In particu-
lar one would need to determine ¢, in a self-consistent man-
ner as a function of wuy. Second, it would be interesting to
look at the phase diagram by relaxing the hardcore constraint
on the bosons by putting a finite on-site repulsion between
them. Of particular interest in this respect is to check if the
slave-boson mean field can provide any indication of the
phase separation found in such a system in Refs. 14 and 15.
Third, it would be useful to study the phase diagram of mix-
ture of spin-polarized fermions with spin-one and spin-two
bosons with nearest-neighbor interactions. Such systems are
expected to have a much richer phase diagram and have not
been theoretically studied so far. Finally, it would clearly be
interesting to investigate the effects of quantum fluctuations
on the obtained mean-field phase diagram. In the limit Z
=tp=Vy=Vr=0, where our Hamiltonian reduces to the well-
known Fallicov-Kimbal model, we find that the mean-field
theory yields qualitatively, but not quantitatively, correct
phase diagram and the same holds in the limit of noninter-
acting fermions where our slave-boson method yields quali-
tatively similar phase diagram to the DMFT studies of Ref.
15. Inclusion of quantum fluctuations to obtain a quantita-
tively accurate phase diagram is therefore clearly a possible
subject of future study.

To conclude, in this work, we have carried out a slave-
boson mean-field analysis of a mixture of hardcore spinless
bosons and spin-polarized fermions in an optical lattice. Our
analysis provides the mean-field phase diagram of the system
and shows the presence of four distinct phases. We have also
computed the low-energy collective modes of three of these
phases (metal+SF, CDW+MI, and SS) and studied the
gapped particle-hole excitation of the fourth (MI). We have
discussed experiments which can be used to test our theory
and possible extension of our theory to other systems.
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